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Abstract. Phase-field models have become popular in the last two decades to describe a host of free-boundary problems. The
strength of the method relies on implicitly describing the dynamics of surfaces and interfaces by a continuous scalar field that
enters the global grand free energy functional of the system. Here we explore the potential utility of this method in order to
describe shock-induced phase transitions. To this end we make use of the Multiphase Field Theory (MFT) to account for the
existence of multiple phases during the transition, and we couple MFT to a hydrodynamic model in the context of a new LLNL
code for phase transitions, SAMSA. As a demonstration of this approach, we apply our code to the α− ε-Fe phase transition under
shock wave loading conditions and compare our results with experiments of Jensen et. al. [J. Appl. Phys., 105:103502 (2009)] and
Barker and Hollenbach [J. Appl. Phys., 45:4872 (1974)].

INTRODUCTION

In this short article we describe a time dependent Ginzburg-Landau [1] method, akin to what is also called the phase
field method [2, 3] for specific situations, where tracking the dynamics of interfaces among different coexisting phases
is of interest. Historically, the phase-field method is seen as a by-product of coarse grained models that describe large-
scale behavior of matter near critical points for mainly second-order phase transitions, classified as models A,B and
C in the scheme of Hohenberg and Halperin [4]. These non-equilibrium models use a local Gibbs free-energy that
is dependent on different thermodynamic fields as well as an order parameter field φ(r, t). The latter demarcates the
boundary (interface) between different phases, and through its time-dependence the description of the dynamics of the
phase transitions is possible. In Figure 1 we depict a microscopic presentation of the order parameter φ for the case of
solidification.

The kinetic equations for the field parameter φ are called non-conserved when their average value does not need
to be satisfed by a conservation equation (unlike mass, momentum and energy). These are categorized as model A. An
example is the magnetization at each finite volume element in an Ising magnet or the density of superconducting phase
in a type-II superconductor [1](density of Cooper pairs at each finite volume). The total free-energy of the system can
be written in the following expansion

F =

∫
dV

[
ε

2
|∇φ|2 + aφ2 + bφ4

]
, (1)

where φ(r, t) is the density of Cooper pairs.
Kinetic equations which govern the evolution of φ are called conserved, and correspond to model B, if they take

the form of a flux conserving equation. This is for example the case of the dynamics of the total solute concentration
in a closed system. Model C will categorize non-equilibrium systems where the dynamics of non-conserved fields
are coupled with the dynamics of one or more conserved fields. A classic example for which the phase-field model
was first introduced is the case of the solidification of an undercooled and/or supersaturated liquid alloy. In the case
of the solidification, the system will be described by the dynamic of the order parameter phase field (nonconserved)
coupled with the dynamic of latent heat (conserved) generated at the solid-liquid interface as well as the dynamic of
concentration (also conserved) [2].



Our ultimate aim is to explore the application of such methods in the realm of phase transitions initiated by dy-
namic compression. One of first detailed descriptions of the time-dependence of a dynamically-driven phase transition
was the pioneering work of Boettger and Wallace on the shock-induced α − ε transition in iron [5]. Here, the time
derivative of the phase fraction was assumed to be related to the distance from thermodynamic equilibrium; this model
has the advantage of containing essentially two independent parameters – a barrier height that governs metastability,
and a relaxation timescale. For ramp compression experiments of iron, where the temperature can be significantly
lower than in a shock wave, Bastea et. al. [6] undertook classical nucleation theory (CNT) analysis of the α − ε Fe
transition measured under quasi-isentropic loading on the Sandia Z machine. More recently, Yu et. al. [7] developed a
phase-field model, akin to the aforementioned C-model in the Hohenberg-Halperin scheme, but coupled its dynamics
to the hydrodynamic equations by evolving a time-dependent equation of state (EOS) in a manner done previously
by Hayes [8]. In this work we build upon the advantages of both of these approaches, having developed a hybrid
phase-field/CNT method to describe shock induced phase transitions by coupling the phase field dynamics with the
Navier-Stokes hydrodynamic equations. We do this by closely following the work of Andersonet. al. [9]. We will
present more details of this in a future article.
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FIGURE 1. A schematic depiction of the atomistic nature of a diffuse solid-liquid interface [2]. The order parameter field φ in
this case can be thought of as the volume fraction that either phase of the system is occupying at each finite volume element of the
system. W is the width of the interface – the “mushy” zone- between the ordered and disordered phase.

Gibbs free energy functional and field evolution equations of a multi-phase system

In the most general case, the global Gibbs free energy for a system with multiple phases is written as [10]:

G
[
{φ},∇{φ}, P,T, · · ·

]
=

∫
Ω

dV g
[
{φ},∇{φ}, P,T, · · ·

]
, (2)

where {φ} is a collection of N phase-field parameters φi such that φi ∈ [0, 1] and
∑N

i φi = 1 at a given spatial point
and time. In Equation (2), P and T are the pressure and temperature field respectively, whose dynamics are given by
hydrodynamic equations. The local Gibbs free energy g

[
{φ},∇{φ}, P,T, · · ·

]
can be expanded as:

g
[
{φ},∇{φ}, P,T, · · ·

]
=

N∑
i=1

g(1)
i +

∑
i, j(i, j)

g(2)
i j +

∑
i, j,k(i, j,k)

g(3)
i jk + · · · , (3)

where, g(1)
i is the local Gibbs free-energy of the bulk of each phase i, g(2)

i j is the energy penalty associated with the

interface between phase i and j, g(3)
i jk the energy due to the presence of a three-way contact point between phases i, j

and k. Ignoring g(3)
i jk and higher order terms simplifies Equations (2) and (3) to:

G
[
{φ},∇{φ}, P,T, · · ·

]
=

∫
Ω

dV
N∑
i

hi({φ})Gi(P,T ) +

N∑
i< j

ωi j(P,T )φ2
i φ

2
j +

N∑
i< j

εi j

2
{φi∇φ j − φ j∇φi}

2. (4)

The first term on the right hand side of Equation (4) interpolates between the Gibbs free energy Gi(P,T ) of each phase
i, which can be computed from a multiphase equation of state (EOS) model. The form of the interpolation function



hi({φ}) is phenomenological. For the simplest case of only two coexisting phases, the most appropriate form is the one
due to Langer [11]:

h(φ) = φ3
(
10 − 15φ + 6φ2

)
. (5)

The last two terms on the right hand side of Equation (4) give the explicit expression for g(2)
i j in Equation (3). The

second term is proportional to the energy barrier, ωi j(P,T ), between bulk phases i and j.
The dynamics of each of these fields is derived by the Euler-Lagrange transport equations in a linear response

approach given by:

∂φi

∂t
= −β

[
γi
δG

[
{φ},∇{φ}, P,T, · · ·

]
δφi

+ ξi ({φ},T, P)
]
, (6)

where γi represents the time-scale for atom rearrangements (attachment/detachment) to phase i from all other phases.
In Equation (6), ξi ({φ},T, P) represents a stochastic noise term which effectively describes fluctuations that are micro-
scopic in origin. At the coarse-grained scale typical of hydrodynamics present in dynamic experiments (on the order
of a micron), we can average over this noise source and utilize classical nucleation theory to provide this mean field.
In this context, parameters in our kinetics model determine the surface free energy difference between phases, barrier
heights and chemical mobility (which, for solid-solid transformations, has a dependence upon the local sound speed
of the initial phase). Coupling the resulting dynamics from Equation (6) to the hydrodynamic equations for P and T ,
(such as Navier-Stokes) provides one of many possible ways to describe shock-induced phase transitions.

Results from the SAMSA hybrid multi-phase field code

Given its importance for basic planetary science, shock wave propagation has been experimentally studied in a number
of settings. While a full introduction to the large data set of dynamically driven Fe experiments is not possible in this
letter, we have selected two specific α−ε Fe gas-gun impact experiments for which to apply the SAMSA kinetics code:
experiments of Jensen et. al.[12], and the seminal impact study of Barker and Hollenbach[13]. The experiments of
Barker highlight how the shock-wave splits into a leading plastic wave (denoted P1) followed by the phase transition
front (P2); further, a third wave arrives due to interaction of a rarefaction from the free surface with the phase interface
(PIR, or phase interface reflection wave). Jensen and co-authors undertook shock experiments in which an Fe bullet is
fired at a transparent sapphire window in order to directly interrogate the interface that is being driven into the high-
pressure ε-Fe phase; the results of these experiments show an “overshoot” due to the (it is believed) finite timescale
associated with nucleating the new phase, followed by a rarefaction shock due to reversion back into the α-Fe phase.

We explored empirical fitting of the SAMSA kinetics model for all three classes of Fe impact experiment and
have found that a single set of parameters can simulate all of these experiments. In order to tune the nucleation rate, we
first matched the overshoot profile from the front-surface impact experiments. Next, we tuned the chemical mobility to
obtain the best possible match to the Jensen transmission data; the resulting fit is not perfect (especially in the region
of the elastic-plastic release) which is not unexpected given that our kinetics model does not yet account for coupling
to plasticity fields. Finally, the resulting model matched well the Barker data without further tuning. We also point out
that in the case of the Barker data, Boettger and Wallace [5] demonstrated that the effects of phase transition kinetics
on the rise-time of the P2 wave is essential to match the PIR, an effect that we discern with SAMSA as well. We have
also discovered, however, that the Barker data does not greatly constrain the kinetics parameters, whereas the front
surface impact geometry is more amenable to the decoupling of metastability from growth rate.

Summary

We have incorporated a time-dependent Ginzburg-Landau framework to describe shock-induced phase transitions and
have implemented that within a new LLNL code named SAMSA. We have used SAMSA to simulate the α − ε-Fe
non-equilibrium phase transition under three different gas-gun impact conditions and have found good agreement
with a single (empirically-fit) model. The essential parameters we varied are the mobility, the nucleation rate and the
free energy barrier. Current efforts are focused on extending the Fe model to include very high compression-rate Fe
laser experiments, and incorporating atomistic information from molecular dynamics and higher-order terms in the
hydrodynamic scale kinetics model.



FIGURE 2. Comparisons of simulated velocimetry with SAMSA (black) for three distinct impact experiments of Fe: (a) front
surface impact experiments of Jensen[12] where an Fe impactor is launched into a sapphire anvil, (b) wave transmission experiment
of Jensen where a sapphire impactor generates a shock in Fe which is tamped with sapphire and (c) symmetric impact experiment
of Barker[13] where an Fe impactor generates a shock in Fe and observed at the free surface. Having used the front-surface
impact measurement to adjust the nucleation rate, the Jensen transmission experiment was used to adjust the chemical mobility
(by matching the rise of the P2 wave) – final application of the resulting model to the symmetric impact case resulted in good
agreement without further adjustment.
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